Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.525
Filtrar
1.
Chem Biol Drug Des ; 103(4): e14520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570710

RESUMO

Quercetin, a bioactive natural compound renowned for its potent anti-inflammatory, antioxidant, and antiviral properties, has exhibited therapeutic potential in various diseases. Given that bronchopulmonary dysplasia (BPD) development is closely linked to inflammation and oxidative stress, and quercetin, a robust antioxidant known to activate NRF2 and influence the ferroptosis pathway, offers promise for a wide range of age groups. Nonetheless, the specific role of quercetin in BPD remains largely unexplored. This study aims to uncover the target role of quercetin in BPD through a combination of network pharmacology, molecular docking, computer analyses, and experimental evaluations.


Assuntos
Displasia Broncopulmonar , Ferroptose , Hiperóxia , Animais , Recém-Nascido , Humanos , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/metabolismo , Hiperóxia/tratamento farmacológico , Hiperóxia/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2 , Animais Recém-Nascidos , Antioxidantes , Farmacologia em Rede
2.
Neurotox Res ; 42(2): 25, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619632

RESUMO

Oxygen (O2) supplementation is commonly used to treat hypoxia in patients with respiratory failure. However, indiscriminate use can lead to hyperoxia, a condition detrimental to living tissues, particularly the brain. The brain is sensitive to reactive oxygen species (ROS) and inflammation caused by high concentrations of O2, which can result in brain damage and mitochondrial dysfunction, common features of neurodegenerative disorders. Hyperoxia leads to increased production of ROS, causing oxidative stress, an imbalance between oxidants and antioxidants, which can damage tissues. The brain is particularly vulnerable to oxidative stress due to its lipid composition, high O2 consumption rate, and low levels of antioxidant enzymes. Moreover, hyperoxia can cause vasoconstriction and decreased O2 supply to the brain, posing a challenge to redox balance and neurodegenerative processes. Studies have shown that the severity of hyperoxia-induced brain damage varies with inspired O2 concentration and duration of exposure. Therefore, careful evaluation of the balance between benefits and risks of O2 supplementation, especially in clinical settings, is crucial.


Assuntos
Lesões Encefálicas , Hiperóxia , Humanos , Espécies Reativas de Oxigênio , Encéfalo , Oxigênio , Antioxidantes
3.
NPJ Biofilms Microbiomes ; 10(1): 32, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553470

RESUMO

Alteration of gut microbiota can affect chronic lung diseases, such as asthma and chronic obstructive pulmonary disease, through abnormal immune and inflammatory responses. Previous studies have shown a feasible connection between gut microbiota and bronchopulmonary dysplasia (BPD) in preterm infants. However, whether BPD can be ameliorated by restoring the gut microbiota remains unclear. In preterm infants with BPD, we found variance in the diversity and structure of gut microbiota. Similarly, BPD rats showed gut dysbiosis, characterized by a deficiency of Lactobacillus, which was abundant in normal rats. We therefore explored the effect and potential mechanism of action of a probiotic strain, Lactobacillus plantarum L168, in improving BPD. The BPD rats were treated with L. plantarum L168 by gavage for 2 weeks, and the effect was evaluated by lung histopathology, lung function, and serum inflammatory markers. Subsequently, we observed reduced lung injury and improved lung development in BPD rats exposed to L. plantarum L168. Further evaluation revealed that L. plantarum L168 improved intestinal permeability in BPD rats. Serum metabolomics showed altered inflammation-associated metabolites following L. plantarum L168 intervention, notably a marked increase in anti-inflammatory metabolites. In agreement with the metabolites analysis, RNA-seq analysis of the intestine and lung showed that inflammation and immune-related genes were down-regulated. Based on the information from RNA-seq, we validated that L. plantarum L168 might improve BPD relating to down-regulation of TLR4 /NF-κB /CCL4 pathway. Together, our findings suggest the potential of L. plantarum L168 to provide probiotic-based therapeutic strategies for BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lactobacillus plantarum , Pneumonia , Humanos , Recém-Nascido , Animais , Ratos , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/etiologia , Hiperóxia/complicações , Hiperóxia/metabolismo , Recém-Nascido Prematuro , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Biomarcadores
4.
Inhal Toxicol ; 36(3): 174-188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38449063

RESUMO

BACKGROUND: Oxygen therapy is an alternative for many patients with hypoxemia. However, this practice can be dangerous as oxygen is closely associated with the development of oxidative stress. METHODS: Male Wistar rats were exposed to hyperoxia with a 40% fraction of inspired oxygen (FIO2) and hyperoxia (FIO2 = 60%) for 120 min. Blood and lung tissue samples were collected for gas, oxidative stress, and inflammatory analyses. RESULTS: Hyperoxia (FIO2 = 60%) increased PaCO2 and PaO2, decreased blood pH and caused thrombocytopenia and lymphocytosis. In lung tissue, neutrophil infiltration, nitric oxide concentration, carbonyl protein formation and the activity of complexes I and II of the mitochondrial respiratory chain increased. FIO2 = 60% decreased SOD activity and caused several histologic changes. CONCLUSION: In conclusion, we have experimentally demonstrated that short-term exposure to high FIO2 can cause oxidative stress in the lung.


Assuntos
Hiperóxia , Humanos , Ratos , Animais , Masculino , Hiperóxia/complicações , Hiperóxia/metabolismo , Transporte de Elétrons , Ratos Wistar , Pulmão/metabolismo , Oxigênio , Estresse Oxidativo
5.
BMC Pulm Med ; 24(1): 130, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491484

RESUMO

Bronchopulmonary dysplasia (BPD) is characterized by alveolar dysplasia, and evidence indicates that interferon regulatory factor 4 (IRF4) is involved in the pathogenesis of various inflammatory lung diseases. Nonetheless, the significance and mechanism of IRF4 in BPD remain unelucidated. Consequently, we established a mouse model of BPD through hyperoxia exposure, and ELISA was employed to measure interleukin-17 A (IL-17 A) and interleukin-6 (IL-6) expression levels in lung tissues. Western blotting was adopted to determine the expression of IRF4, surfactant protein C (SP-C), and podoplanin (T1α) in lung tissues. Flow cytometry was utilized for analyzing the percentages of FOXP3+ regulatory T cells (Tregs) and FOXP3+RORγt+ Tregs in CD4+ T cells in lung tissues to clarify the underlying mechanism. Our findings revealed that BPD mice exhibited disordered lung tissue structure, elevated IRF4 expression, decreased SP-C and T1α expression, increased IL-17 A and IL-6 levels, reduced proportion of FOXP3+ Tregs, and increased proportion of FOXP3+RORγt+ Tregs. For the purpose of further elucidating the effect of IRF4 on Treg phenotype switching induced by hyperoxia in lung tissues, we exposed neonatal mice with IRF4 knockout to hyperoxia. These mice exhibited regular lung tissue structure, increased proportion of FOXP3+ Tregs, reduced proportion of FOXP3+RORγt+ Tregs, elevated SP-C and T1α expression, and decreased IL-17 A and IL-6 levels. In conclusion, our findings demonstrate that IRF4-mediated Treg phenotype switching in lung tissues exacerbates alveolar epithelial cell injury under hyperoxia exposure.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Camundongos , Células Epiteliais Alveolares/patologia , Linfócitos T Reguladores/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Hiperóxia/complicações , Displasia Broncopulmonar/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Fenótipo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
6.
J Biomed Sci ; 31(1): 30, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500170

RESUMO

BACKGROUND: Acute lung injury (ALI) is a life-threatening respiratory condition characterized by severe inflammation and lung tissue damage, frequently causing rapid respiratory failure and long-term complications. The microRNA let-7a-5p is involved in the progression of lung injury, inflammation, and fibrosis by regulating immune cell activation and cytokine production. This study aims to use an innovative cellular electroporation platform to generate extracellular vesicles (EVs) carring let-7a-5p (EV-let-7a-5p) derived from transfected Wharton's jelly-mesenchymal stem cells (WJ-MSCs) as a potential gene therapy for ALI. METHODS: A cellular nanoporation (CNP) method was used to induce the production and release of EV-let-7a-5p from WJ-MSCs transfected with the relevant plasmid DNA. EV-let-7a-5p in the conditioned medium were isolated using a tangential flow filtration (TFF) system. EV characterization followed the minimal consensus guidelines outlined by the International Society for Extracellular Vesicles. We conducted a thorough set of therapeutic assessments, including the antifibrotic effects using a transforming growth factor beta (TGF-ß)-induced cell model, the modulation effects on macrophage polarization, and the influence of EV-let-7a-5p in a rat model of hyperoxia-induced ALI. RESULTS: The CNP platform significantly increased EV secretion from transfected WJ-MSCs, and the encapsulated let-7a-5p in engineered EVs was markedly higher than that in untreated WJ-MSCs. These EV-let-7a-5p did not influence cell proliferation and effectively mitigated the TGF-ß-induced fibrotic phenotype by downregulating SMAD2/3 phosphorylation in LL29 cells. Furthermore, EV-let-7a-5p regulated M2-like macrophage activation in an inflammatory microenvironment and significantly induced interleukin (IL)-10 secretion, demonstrating their modulatory effect on inflammation. Administering EVs from untreated WJ-MSCs slightly improved lung function and increased let-7a-5p expression in plasma in the hyperoxia-induced ALI rat model. In comparison, EV-let-7a-5p significantly reduced macrophage infiltration and collagen deposition while increasing IL-10 expression, causing a substantial improvement in lung function. CONCLUSION: This study reveals that the use of the CNP platform to stimulate and transfect WJ-MSCs could generate an abundance of let-7a-5p-enriched EVs, which underscores the therapeutic potential in countering inflammatory responses, fibrotic activation, and hyperoxia-induced lung injury. These results provide potential avenues for developing innovative therapeutic approaches for more effective interventions in ALI.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Hiperóxia , MicroRNAs , Ratos , Animais , Células Cultivadas , Hiperóxia/metabolismo , Inflamação , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Vesículas Extracelulares/fisiologia , Fibrose , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo
7.
J Biochem Mol Toxicol ; 38(4): e23680, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511245

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic respiratory disease in newborns, which severely influences the health of infants and lacks effective clinical treatment strategies. The pathogenesis of BPD is correlated to enhanced inflammation and activated oxidative stress (OS). The application of antioxidants and anti-inflammatory treatment could be hot spots for BPD treatment. Nesfatin-1, a peptide with a suppressive property against inflammation, was tested herein for its potential therapeutic value in BPD. Neonatal SD rats were stimulated with hyperoxia, followed by being intraperitoneally administered with 20 µg/kg/day Nesfatin-1 for 2 weeks. Decreased RAC value in lung tissues, increased wet weight/dry weight (W/D) pulmonary ratio and bronchoalveolar lavage fluid (BALF) proteins, elevated cytokine release in BALF, increased malondialdehyde (MDA) content, and declined superoxide dismutase (SOD) activity were observed in BPD rats, all of which were sharply mitigated by Nesfatin-1. Rat epithelial type II cells (AECIIs) were handled with hyperoxia, and then cultured with 1 and 10 nM Nesfatin-1. Reduced cell viability, elevated lactate dehydrogenase production, elevated cytokine secretion, elevated MDA content, and decreased SOD activity were observed in hyperoxia-handled AECIIs, all of which were markedly alleviated by Nesfatin-1. Furthermore, activated nuclear factor-κB (NF-κB) signaling observed in both BPD rats and hyperoxia-handled AECIIs were notably repressed by Nesfatin-1. Collectively, Nesfatin-1 alleviated hyperoxia-triggered BPD by repressing inflammation and OS via the NF-κB signaling pathway.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Humanos , Recém-Nascido , Ratos , Animais Recém-Nascidos , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Hiperóxia/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Superóxido Dismutase/metabolismo
8.
Stem Cell Res Ther ; 15(1): 80, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486338

RESUMO

BACKGROUND: Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among preterm infants. Human induced pluripotent stem cells (hiPSCs) have shown promise in repairing injury in animal BPD models. Evidence suggests they exert their effects via paracrine mechanisms. We aim herein to assess the effectiveness of extracellular vesicles (EVs) derived from hiPSCs and their alveolar progenies (diPSCs) in attenuating hyperoxic injury in a preterm lung explant model. METHODS: Murine lung lobes were harvested on embryonic day 17.5 and maintained in air-liquid interface. Following exposure to 95% O2 for 24 h, media was supplemented with 5 × 106 particles/mL of EVs isolated from hiPSCs or diPSCs by size-exclusion chromatography. On day 3, explants were assessed using Hematoxylin-Eosin staining with mean linear intercept (MLI) measurements, immunohistochemistry, VEGFa and antioxidant gene expression. Statistical analysis was conducted using one-way ANOVA and Multiple Comparison Test. EV proteomic profiling was performed, and annotations focused on alveolarization and angiogenesis signaling pathways, as well as anti-inflammatory, anti-oxidant, and regenerative pathways. RESULTS: Exposure of fetal lung explants to hyperoxia induced airspace enlargement, increased MLI, upregulation of anti-oxidants Prdx5 and Nfe2l2 with decreased VEGFa expression. Treatment with hiPSC-EVs improved parenchymal histologic changes. No overt changes in vasculature structure were observed on immunohistochemistry in our in vitro model. However, VEGFa and anti-oxidant genes were upregulated with diPSC-EVs, suggesting a pro-angiogenic and cytoprotective potential. EV proteomic analysis provided new insights in regard to potential pathways influencing lung regeneration. CONCLUSION: This proof-of-concept in vitro study reveals a potential role for hiPSC- and diPSC-EVs in attenuating lung changes associated with prematurity and oxygen exposure. Our findings pave the way for a novel cell free approach to prevent and/or treat BPD, and ultimately reduce the global burden of the disease.


Assuntos
Displasia Broncopulmonar , Vesículas Extracelulares , Hiperóxia , Células-Tronco Pluripotentes Induzidas , Lesão Pulmonar , Animais , Camundongos , Humanos , Recém-Nascido , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Animais Recém-Nascidos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lesão Pulmonar/terapia , Lesão Pulmonar/etiologia , Antioxidantes/metabolismo , Proteômica , Recém-Nascido Prematuro , Pulmão/patologia , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo
9.
CNS Neurosci Ther ; 30(3): e14694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532579

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a common cerebrovascular disease, and the complement cascade exacerbates brain injury after ICH. As the most abundant component of the complement system, complement component 3 (C3) plays essential roles in all three complement pathways. However, the effects of C3 on neurological impairment and brain injury in ICH patients and the related mechanism have not been fully elucidated. Normobaric hyperoxia (NBO) is regarded as a treatment for ICH patients, and recent clinical studies also have confirmed the neuroprotective role of NBO against acute ICH-mediated brain damage, but the underlying mechanism still remains elusive. AIMS: In the present study, we investigated the effects of complement C3 on NBO-treated ICH patients and model mice, and the underlying mechanism of NBO therapy in ICH-mediated brain injury. RESULTS: Hemorrhagic injury resulted in the high plasma C3 levels in ICH patients, and the plasma C3 levels were closely related to hemorrhagic severity and clinical outcomes after ICH. BO treatment alleviated neurologic impairments and rescued the hemorrhagic-induced increase in plasma C3 levels in ICH patients and model mice. Moreover, the results indicated that NBO exerted its protective effects of on brain injury after ICH by downregulating the expression of C3 in microglia and alleviating microglia-mediated synaptic pruning. CONCLUSIONS: Our results revealed that NBO exerts its neuroprotective effects by reducing C3-mediated synaptic pruning, which suggested that NBO therapy could be used for the clinical treatment of ICH.


Assuntos
Lesões Encefálicas , Hiperóxia , Humanos , Camundongos , Animais , Complemento C3/metabolismo , Complemento C3/uso terapêutico , Hemorragia Cerebral/metabolismo , Hemorragias Intracranianas
10.
Crit Care ; 28(1): 66, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429791

RESUMO

Molecular oxygen is typically delivered to patients via oxygen inhalation or extracorporeal membrane oxygenation (ECMO), potentially resulting in systemic hyperoxia from liberal oxygen inhalation or localized hyperoxia in the lower body from peripheral venoarterial (VA) ECMO. Consequently, this exposes the gastrointestinal tract to excessive oxygen levels. Hyperoxia can trigger organ damage due to the overproduction of reactive oxygen species and is associated with increased mortality. The gut and gut microbiome play pivotal roles in critical illnesses and even small variations in oxygen levels can have a dramatic influence on the physiology and ecology of gut microbes. Here, we reviewed the emerging preclinical evidence which highlights how excessive inhaled oxygen can provoke diffuse villous damage, barrier dysfunction in the gut, and gut dysbiosis. The hallmark of this dysbiosis includes the expansion of oxygen-tolerant pathogens (e.g., Enterobacteriaceae) and the depletion of beneficial oxygen-intolerant microbes (e.g., Muribaculaceae). Furthermore, we discussed potential impact of oxygen on the gut in various underlying critical illnesses involving inspiratory oxygen and peripheral VA-ECMO. Currently, the available findings in this area are somewhat controversial, and a consensus has not yet to be reached. It appears that targeting near-physiological oxygenation levels may offer a means to avoid hyperoxia-induced gut injury and hypoxia-induced mesenteric ischemia. However, the optimal oxygenation target may vary depending on special clinical conditions, including acute hypoxia in adults and neonates, as well as particular patients undergoing gastrointestinal surgery or VA-ECMO support. Last, we outlined the current challenges and the need for future studies in this area. Insights into this vital ongoing research can assist clinicians in optimizing oxygenation for critically ill patients.


Assuntos
Hiperóxia , Adulto , Recém-Nascido , Humanos , Hiperóxia/complicações , Estado Terminal/terapia , Disbiose , Oxigênio/efeitos adversos , Hipóxia
11.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(2): 185-190, 2024 Feb 24.
Artigo em Chinês | MEDLINE | ID: mdl-38326071

RESUMO

Objective: To investigate the influence of varied oxygen (O2) concentration environments on the phenotypic transformation of pulmonary artery smooth muscle cells (PASMC) and the mechanism of pulmonary hypertension. Methods: Primary rat PASMC were isolated and cultured through the process of enzymatic digestion. Following identification, the stable passaged PASMC were subjected to a 6-hour incubation in sealed containers with normal O2 content (group C) and relative O2 content comprising 55% (group H55), 75% (group H75), and 95% (group H95). mRNA and protein expression of α-Actin (α-SMA), smooth muscle 22α (SM22α), osteopontin (OPN), and matrix metalloproteinase-2 (MMP-2) were measured using real-time quantitative PCR and western blot analysis. Results: The H55 group displayed no significant difference from the C group in terms of mRNA and relative protein expression levels for α-SMA, SM22α, OPN, and MMP-2 (all P>0.05). On the other hand, groups H75 and H95 exhibited a reduction in mRNA and relative protein expression of α-SMA and SM22α, along with an increase in mRNA and relative protein expression of OPN and MMP-2 when compared with both the C and H55 groups (all P<0.05). The H95 group showed a higher relative mRNA expression of MMP-2 as compared to the H75 group (P<0.05). Conclusions: Oxygen concentration environments of 75% or higher can serve as the foundation for the pathogenesis of pulmonary hypertension, essentially by inducing a phenotypic transformation in PASMC towards adopting a robust secretory function. This induction is contingent upon the concentration of oxygen present.


Assuntos
Hiperóxia , Hipertensão Pulmonar , Ratos , Animais , Artéria Pulmonar/patologia , Metaloproteinase 2 da Matriz/genética , Hiperóxia/metabolismo , Hiperóxia/patologia , Actinas/genética , Actinas/metabolismo , Miócitos de Músculo Liso/metabolismo , Oxigênio/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Cultivadas
12.
Am J Physiol Regul Integr Comp Physiol ; 326(4): R319-R329, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314699

RESUMO

Breath-holding preceded by either an overnight fast or hyperventilation has been shown to potentiate the risk of a hypoxic blackout. However, no study has explored the combined effects of fasting and hyperventilation on apneic performance and associated physiological responses. Nine nondivers (8 males) attended the laboratory on two separate occasions (≥48 h apart), both after a 12-h overnight fast. During each visit, a hyperoxic rebreathing trial was performed followed by three repeated maximal static apneas preceded by either normal breathing (NORM) or a 30-s hyperventilation (HYPER). Splenic volume, hematology, cardiovascular, and respiratory variables were monitored. There were no interprotocol differences at rest or during hyperoxic rebreathing for any variable (P ≥ 0.09). On nine occasions (8 in HYPER), the subjects reached our safety threshold (oxygen saturation 65%) and were asked to abort their apneas, with the preponderance of these incidents (6 of 9) occurring during the third repetition. Across the sequential attempts, longer apneas were recorded in HYPER [median(range), 220(123-324) s vs. 185(78-296) s, P ≤ 0.001], with involuntary breathing movements occurring later [134(65-234) s vs. 97(42-200) s, P ≤ 0.001] and end-apneic partial end-tidal pressures of oxygen (PETO2) being lower (P ≤ 0.02). During the final repetition, partial end-tidal pressure of carbon dioxide [(PETCO2), 6.53 ± 0.46 kPa vs. 6.01 ± 0.45 kPa, P = 0.005] was lower in HYPER. Over the serial attempts, preapneic tidal volume was gradually elevated [from apnea 1 to 3, by 0.26 ± 0.24 L (HYPER) and 0.28 ± 0.30 L (NORM), P ≤ 0.025], with a correlation noted with preapneic PETCO2 (r = -0.57, P < 0.001) and PETO2 (r = 0.76, P < 0.001), respectively. In a fasted state, preapnea hyperventilation compared with normal breathing leads to longer apneas but may increase the susceptibility to a hypoxic blackout.NEW & NOTEWORTHY This study shows that breath-holds (apneas) preceded by a 12-h overnight fast coupled with a 30-s hyperventilation as opposed to normal breathing may increase the likelihood of a hypoxic blackout through delaying the excitation of hypercapnic ventilatory sensory chemoreflexes. Evidently, this risk is exacerbated over a series of repeated maximal attempts, possibly due to a shift in preapneic gas tensions facilitated by an unintentional increase in tidal volume breathing.


Assuntos
Apneia , Hiperóxia , Masculino , Humanos , Apneia/diagnóstico , Hiperventilação , Suspensão da Respiração , Respiração , Dióxido de Carbono , Hipóxia , Síncope , Jejum/fisiologia
13.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(1): 33-39, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38404269

RESUMO

OBJECTIVE: To observe and verify the changes of transcriptome in hyperoxia-induced acute lung injury (HALI), and to further clarify the changes of pathways in HALI. METHODS: Twelve healthy male C57BL/6J mice were randomly divided into normoxia group and HALI group according to the random number table, with 6 mice in each group. The mice in the normoxia group were fed normally in the room, and the mice in the HALI group was exposed to 95% oxygen to reproduce the HALI animal model. After 72 hours of hyperoxia exposure, the lung tissues were taken for transcriptome sequencing, and then Kyoto Encyclopedia of Genes and Genomes database (KEGG) pathway enrichment analysis was performed. The pathological changes of lung tissue were observed under light microscope after hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to verify the key molecules in the signal pathways closely related to HALI identified by transcriptomics analysis. RESULTS: Transcriptomic analysis showed that hyperoxia induced 537 differentially expressed genes in lung tissue of mice as compared with the normoxia group including 239 up-regulated genes and 298 down-regulated genes. Further KEGG pathway enrichment analysis identified 20 most significantly enriched pathway entries, and the top three pathways were ferroptosis signaling pathway, p53 signaling pathway and glutathione (GSH) metabolism signaling pathway. The related genes in the ferroptosis signaling pathway included the up-regulated gene heme oxygenase-1 (HO-1) and the down-regulated gene solute carrier family 7 member 11 (SLC7A11). The related genes in the p53 signaling pathway included the up-regulated gene tumor suppressor gene p53 and the down-regulated gene murine double minute 2 (MDM2). The related gene in the GSH metabolic signaling pathway was up-regulated gene glutaredoxin 1 (Grx1). The light microscope showed that the pulmonary alveolar structure of the normoxia group was normal. In the HALI group, the pulmonary alveolar septum widened and thickened, and the alveolar cavity shrank or disappeared. RT-RCR and Western blotting confirmed that compared with the normoxia group, the mRNA and protein expressions of HO-1 and p53 in lung tissue of the HALI group were significantly increased [HO-1 mRNA (2-ΔΔCt): 2.16±0.17 vs. 1.00±0.00, HO-1 protein (HO-1/ß-actin): 1.05±0.01 vs. 0.79±0.01, p53 mRNA (2-ΔΔCt): 2.52±0.13 vs. 1.00±0.00, p53 protein (p53/ß-actin): 1.12±0.02 vs. 0.58±0.03, all P < 0.05], and the mRNA and protein expressions of Grx1, MDM2, SLC7A11 were significantly decreased [Grx1 mRNA (2-ΔΔCt): 0.53±0.05 vs. 1.00±0.00, Grx1 protein (Grx1/ß-actin): 0.54±0.03 vs. 0.93±0.01, MDM2 mRNA (2-ΔΔCt): 0.48±0.03 vs. 1.00±0.00, MDM2 protein (MDM2/ß-actin): 0.57±0.02 vs. 1.05±0.01, SLC7A11 mRNA (2-ΔΔCt): 0.50±0.06 vs. 1.00±0.00, SLC7A11 protein (SLC7A11/ß-actin): 0.72±0.03 vs. 0.98±0.01, all P < 0.05]. CONCLUSIONS: HALI is closely related to ferroptosis, p53 and GSH metabolism signaling pathways. Targeting the key targets in ferroptosis, p53 and GSH metabolism signaling pathways may be an important strategy for the prevention and treatment of HALI.


Assuntos
Lesão Pulmonar Aguda , Hiperóxia , Ratos , Camundongos , Masculino , Animais , Proteína Supressora de Tumor p53 , Hiperóxia/complicações , Ratos Sprague-Dawley , Actinas , Camundongos Endogâmicos C57BL , Transdução de Sinais , Perfilação da Expressão Gênica , RNA Mensageiro
14.
Exp Lung Res ; 50(1): 25-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419581

RESUMO

BACKGROUND: The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS: Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS: Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS: BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesão Pulmonar , Animais , Humanos , Recém-Nascido , Camundongos , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Modelos Animais de Doenças , Células Endoteliais/patologia , Hiperóxia/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA Mensageiro/metabolismo
15.
Am J Crit Care ; 33(2): 82-92, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424024

RESUMO

BACKGROUND: Hyperoxemia, often overlooked in critically ill patients, is common and may have adverse consequences. OBJECTIVE: To evaluate the incidence of hyperoxemia induced by oxygen therapy in nonsurgical critically ill patients at intensive care unit (ICU) admission and the association of hyperoxemia with hospital mortality. METHODS: This prospective cohort study included all consecutive admissions of nonsurgical patients aged 18 years or older who received oxygen therapy on admission to the Hospital Santa Luzia Rede D'Or São Luiz adult ICU from July 2018 through June 2021. Patients were categorized into 3 groups according to Pao2 level at ICU admission: hypoxemia (Pao2<60 mm Hg), normoxemia (Pao2= 60-120 mm Hg), and hyperoxemia (Pao2 >120 mm Hg). RESULTS: Among 3088 patients, hyperoxemia was present in 1174 (38.0%) and was independently associated with hospital mortality (odds ratio [OR], 1.32; 95% CI, 1.04-1.67; P=.02). Age (OR, 1.02; 95% CI, 1.02-1.02; P<.001) and chronic kidney disease (OR, 1.55; 95% CI, 1.02-2.36; P=.04) were associated with a higher rate of hyperoxemia. Factors associated with a lower rate of hyperoxemia were Sequential Organ Failure Assessment score (OR, 0.88; 95% CI, 0.83-0.93; P<.001); late-night admission (OR, 0.80; 95% CI, 0.67-0.96; P=.02); and renal/metabolic (OR, 0.22; 95% CI, 0.13-1.39; P<.001), neurologic (OR, 0.02; 95% CI, 0.01-0.05; P<.001), digestive (OR, 0.23; 95% CI, 0.13-0.41; P<.001), and soft tissue/skin/orthopedic (OR, 0.32; 95% CI, 0.13-0.79; P=.01) primary reasons for hospital admission. CONCLUSION: Hyperoxemia induced by oxygen therapy was common in critically ill patients and was linked to increased risk of hospital mortality. Health care professionals should be aware of this condition because of its potential risks and unnecessary costs.


Assuntos
Hiperóxia , Oxigênio , Adulto , Humanos , Oxigênio/uso terapêutico , Hiperóxia/etiologia , Hiperóxia/complicações , Estudos Prospectivos , Estado Terminal/terapia , Estudos Retrospectivos , Unidades de Terapia Intensiva
16.
PLoS One ; 19(2): e0299661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416753

RESUMO

Epigenetics is an emerging field of research because of its involvement in susceptibility to diseases and aging. Hypoxia and hyperoxia are known to be involved widely in various pathophysiologies. Here, we compared the differential epigene expression pattern between Pleurodeles waltl and Mus musculus (commonly known as Iberian ribbed newt and mouse, respectively) exposed to hypoxia and hyperoxia. Adult healthy newts and mice were exposed to normobaric hypoxia (8% O2) and hyperoxia (80% O2) for 2 hours. We collected the lungs and analyzed the expression of hypoxia-inducible factor 1 alpha (Hif1α) and several key epigenes from DNA methyltransferase (DNMT) family, histone deacetylase (HDAC) family, and methyl-CpG binding domain (MBD) family. The exposure to hypoxia significantly increased the mRNA levels of DNA methyltransferase 3 alpha (Dnmt3α), methyl-CpG binding domain protein 2 (Mbd2), Mbd3, and histone deacetylase 2 (Hdac2) in lungs of newts, but decreased the mRNA levels of DNA methyltransferase 1 (Dnmt1) and Dnmt3α in lungs of mice. The exposure to hyperoxia did not significantly change the expression of any gene in either newts or mice. The differential epigene expression pattern in response to hypoxia between newts and mice may provide novel insights into the prevention and treatment of disorders developed due to hypoxia exposure.


Assuntos
Hiperóxia , Pleurodeles , Animais , Camundongos , Pleurodeles/genética , Hiperóxia/genética , Hipóxia/genética , Salamandridae/genética , Pulmão , RNA Mensageiro/genética , DNA , Metiltransferases
17.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396709

RESUMO

Oxygen is compulsory for mitochondrial function and energy supply, but it has numerous more nuanced roles. The different roles of oxygen in peripheral nerve regeneration range from energy supply, inflammation, phagocytosis, and oxidative cell destruction in the context of reperfusion injury to crucial redox signaling cascades that are necessary for effective axonal outgrowth. A fine balance between reactive oxygen species production and antioxidant activity draws the line between physiological and pathological nerve regeneration. There is compelling evidence that redox signaling mediated by the Nox family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases plays an important role in peripheral nerve regeneration. Further research is needed to better characterize the role of Nox in physiological and pathological circumstances, but the available data suggest that the modulation of Nox activity fosters great therapeutic potential. One of the promising approaches to enhance nerve regeneration by modulating the redox environment is hyperbaric oxygen therapy. In this review, we highlight the influence of various oxygenation states, i.e., hypoxia, physoxia, and hyperoxia, on peripheral nerve repair and regeneration. We summarize the currently available data and knowledge on the effectiveness of using hyperbaric oxygen therapy to treat nerve injuries and discuss future directions.


Assuntos
Hiperóxia , Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/metabolismo , Hipóxia , Nervos Periféricos/metabolismo , Regeneração Nervosa
18.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397071

RESUMO

The "normobaric oxygen paradox" (NOP) describes the response to the return to normoxia after a hyperoxic event, sensed by tissues as an oxygen shortage, up-regulating redox-sensitive transcription factors. We have previously characterized the time trend of oxygen-sensitive transcription factors in human PBMCs, in which the return to normoxia after 30% oxygen is sensed as a hypoxic trigger, characterized by hypoxia-induced factor (HIF-1) activation. On the contrary, 100% and 140% oxygen induce a shift toward an oxidative stress response, characterized by NRF2 and NF-kB activation in the first 24 h post exposure. Herein, we investigate whether this paradigm triggers Advanced Glycation End products (AGEs) and Advanced Oxidation Protein Products (AOPPs) as circulating biomarkers of oxidative stress. Secondly, we studied if mitochondrial biogenesis was involved to link the cellular response to oxidative stress in human PBMCs. Our results show that AGEs and AOPPs increase in a different manner according to oxygen dose. Mitochondrial levels of peroxiredoxin (PRX3) supported the cellular response to oxidative stress and increased at 24 h after mild hyperoxia, MH (30% O2), and high hyperoxia, HH (100% O2), while during very high hyperoxia, VHH (140% O2), the activation was significantly high only at 3 h after oxygen exposure. Mitochondrial biogenesis was activated through nuclear translocation of PGC-1α in all the experimental conditions. However, the consequent release of nuclear Mitochondrial Transcription Factor A (TFAM) was observed only after MH exposure. Conversely, HH and VHH are associated with a progressive loss of NOP response in the ability to induce TFAM expression despite a nuclear translocation of PGC-1α also occurring in these conditions. This study confirms that pulsed high oxygen treatment elicits specific cellular responses, according to its partial pressure and time of administration, and further emphasizes the importance of targeting the use of oxygen to activate specific effects on the whole organism.


Assuntos
Hiperóxia , Oxigênio , Humanos , Oxigênio/farmacologia , Oxigênio/metabolismo , Hiperóxia/metabolismo , Produtos da Oxidação Avançada de Proteínas/metabolismo , Projetos Piloto , Biogênese de Organelas , Leucócitos Mononucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hipóxia , Estresse Oxidativo/fisiologia , Produtos Finais de Glicação Avançada/metabolismo
19.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397093

RESUMO

The lung can experience different oxygen concentrations, low as in hypoxia, high as under supplemental oxygen therapy, or oscillating during intermittent hypoxia as in obstructive sleep apnea or intermittent hypoxia/hyperoxia due to cyclic atelectasis in the ventilated patient. This study aimed to characterize the oxygen-condition-specific protein composition of extracellular vesicles (EVs) released from human pulmonary microvascular endothelial cells in vitro to decipher their potential role in biotrauma using quantitative proteomics with bioinformatic evaluation, transmission electron microscopy, flow cytometry, and non-activated thromboelastometry (NATEM). The release of vesicles enriched in markers CD9/CD63/CD81 was enhanced under intermittent hypoxia, strong hyperoxia and intermittent hypoxia/hyperoxia. Particles with exposed phosphatidylserine were increased under intermittent hypoxia. A small portion of vesicles were tissue factor-positive, which was enhanced under intermittent hypoxia and intermittent hypoxia/hyperoxia. EVs from treatment with intermittent hypoxia induced a significant reduction of Clotting Time in NATEM analysis compared to EVs isolated after normoxic exposure, while after intermittent hypoxia/hyperoxia, tissue factor in EVs seems to be inactive. Gene set enrichment analysis of differentially expressed genes revealed that EVs from individual oxygen conditions potentially induce different biological processes such as an inflammatory response under strong hyperoxia and intermittent hypoxia/hyperoxia and enhancement of tumor invasiveness under intermittent hypoxia.


Assuntos
Vesículas Extracelulares , Hiperóxia , Humanos , Oxigênio/farmacologia , Oxigênio/metabolismo , Hiperóxia/metabolismo , Proteoma/metabolismo , Células Endoteliais/patologia , Tromboplastina/metabolismo , Pulmão/patologia , Hipóxia/metabolismo , Vesículas Extracelulares/metabolismo , Endotélio/patologia
20.
J Appl Physiol (1985) ; 136(4): 853-863, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385182

RESUMO

Ventilation-perfusion matching occurs passively and is also actively regulated through hypoxic pulmonary vasoconstriction (HPV). The extent of HPV activity in humans, particularly normal subjects, is uncertain. Current evaluation of HPV assesses changes in ventilation-perfusion relationships/pulmonary vascular resistance with hypoxia and is invasive, or unsuitable for patients because of safety concerns. We used a noninvasive imaging-based approach to quantify the pulmonary vascular response to oxygen as a metric of HPV by measuring perfusion changes between breathing 21% and 30%O2 using arterial spin labeling (ASL) MRI. We hypothesized that the differences between 21% and 30%O2 images reflecting HPV release would be 1) significantly greater than the differences without [Formula: see text] changes (e.g., 21-21% and 30-30%O2) and 2) negatively associated with ventilation-perfusion mismatch. Perfusion was quantified in the right lung in normoxia (baseline), after 15 min of 30% O2 breathing (hyperoxia) and 15 min normoxic recovery (recovery) in healthy subjects (7 M, 7 F; age = 41.4 ± 19.6 yr). Normalized, smoothed, and registered pairs of perfusion images were subtracted and the mean square difference (MSD) was calculated. Separately, regional alveolar ventilation and perfusion were quantified from specific ventilation, proton density, and ASL imaging; the spatial variance of ventilation-perfusion (σ2V̇a/Q̇) distributions was calculated. The O2-responsive MSD was reproducible (R2 = 0.94, P < 0.0001) and greater (0.16 ± 0.06, P < 0.0001) than that from subtracted images collected under the same [Formula: see text] (baseline = 0.09 ± 0.04, hyperoxia = 0.08 ± 0.04, recovery = 0.08 ± 0.03), which were not different from one another (P = 0.2). The O2-responsive MSD was correlated with σ2V̇a/Q̇ (R2 = 0.47, P = 0.007). These data suggest that active HPV optimizes ventilation-perfusion matching in normal subjects. This noninvasive approach could be applied to patients with different disease phenotypes to assess HPV and ventilation-perfusion mismatch.NEW & NOTEWORTHY We developed a new proton MRI method to noninvasively quantify the pulmonary vascular response to oxygen. Using a hyperoxic stimulus to release HPV, we quantified the resulting redistribution of perfusion. The differences between normoxic and hyperoxic images were greater than those between images without [Formula: see text] changes and negatively correlated with ventilation-perfusion mismatch. This suggests that active HPV optimizes ventilation-perfusion matching in normal subjects. This approach is suitable for assessing patients with different disease phenotypes.


Assuntos
Hiperóxia , Infecções por Papillomavirus , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Oxigênio , Prótons , Circulação Pulmonar/fisiologia , Pulmão/fisiologia , Hipóxia , Vasoconstrição/fisiologia , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...